
If Windows Help is used as an online Help system with context sensitivity, the
application must be programmed so that the user can access the Help application
and the appropriate Help file. The WinHelp API supports both context-sensitive
and topical searches of the Help file.

This chapter explains the WinHelp function and describes different ways to call

Help from a Windows application.

An application makes a Help system available to the user by calling the WinHelp

function. The WinHelp function uses the following C-language syntax.

BOOL WinHelp (hWnd, lpszHelpFile, wCommand, dwData)
HWND hwnd; /* handle of window requesting help */
LPCSTR lpszHelpFile; /* address of directory-path string */
UINT wCommand; /* type of help */
DWORD dwData; /* additional data */
The WinHelp function starts Windows Help (WINHELP.EXE) and passes
optional data indicating the nature of the help requested by the application. The
application specifies the name and, where required, the path of the Help file that

the Help application is to display.

hWnd
Identifies the window requesting Help. The WinHelp function uses
this handle to keep track of which applications have requested Help.

The WinHelp API

___ Chapter 19

The WinHelp Function

Syntax

Parameters

 Microsoft Windows Help Authoring Guide

lpszHelpFile
Points to a null-terminated string containing the path, if necessary,
and the name and extension of the Help file that the Help application
is to display. The Help file extension (usually .HLP) is required, and
a directory path to the Help file is recommended.
The filename may be followed by an angle bracket (>) and the name
of a secondary window if the topic is to be displayed in a secondary
window rather than the main Help window. The name of the
secondary window must have been defined in the [WINDOWS]
section of the Help project file for the Help file being called. For a
description of the possible effects on the main and secondary Help
windows, see the following “Comments” section.

wCommand
Specifies the type of help requested. For a list of possible values and
how they affect the value to place in the dwData parameter, see the
following “Comments” section.

dwData
Specifies additional data. The value used depends on the value of the
wCommand parameter. For a list of possible values, see the following

“Comments” section.

WinHelp returns a nonzero value if the function is successful. Otherwise, the

return value is zero.

Before closing the window that requested Help, the application must call
WinHelp with wCommand set to HELP_QUIT. Until all applications have done
this, Windows Help does not terminate.

The following table describes the possible effects on the main and secondary
Help windows when using the >WindowName parameter:

Return Value

Comments

The WinHelp API§ 19-3
State at time of call Effect on window after API call

Main Secondary Main Secondary

closed closed Not opened Opens the window and displays the Help
file and topic specified in the call.

open open Unaffected Displays the specified Help file and topic
in the open window if the call specifies the
same window name as the secondary
window that is already open.

Otherwise, the call closes the secondary
window, opens the new secondary
window, and displays the specified Help
file and topic.

The following table shows the possible values for the wCommand parameter and
the corresponding formats of the dwData parameter.

wCommand value
dwData format

Action

HELP_CONTEXT
An unsigned long integer
containing the context
number for the topic.

Displays the topic identified by a context number
that has been defined in the [MAP] section of the
Help project file.

HELP_CONTEXTNOFOCUS

An unsigned long integer
containing the context
number for the topic.

Displays the topic identified by a context number
that has been defined in the [MAP] section of the
Help project file. Help does not change the focus to
the window displaying the topic.

 Microsoft Windows Help Authoring Guide

HELP_CONTEXTPOPUP

An unsigned long integer
containing the context
number for the topic.

Displays in a pop-up window the topic identified by
a context number that has been defined in the
[MAP] section of the Help project file. The main
Help window is not displayed.

HELP_CONTENTS

Ignored; applications should
set to 0L

Displays the topic defined by the CONTENTS
option in [OPTIONS] section of the Help project
file.

HELP_SETCONTENTS

An unsigned long integer
containing the context
number for the topic the
application wants to
designate as the Contents
topic.

Determines which Contents topic Help should
display when a user presses F1 or chooses the
Contents button in Help. This call should never be
used with HELP_CONTENTS.

If a Help file has two or more Contents topics, the
application must assign one as the default. To
ensure that the correct Contents topic remains set,
the application should call WinHelp with
wCommand set to HELP_SETCONTENTS and
dwData specifying the corresponding context
identifier. Each call to WinHelp should be followed
with a command set to HELP_CONTEXT.

HELP_POPUPID

A long pointer to a string
that contains the context
string of the topic to be
displayed.

Displays in a pop-up window the topic identified by
a specific context string. The main Help window is
not displayed.

HELP_KEY

A long pointer to a string
that contains a keyword for
the requested topic.

Displays the topic in the keyword list that matches
the keyword passed in the dwData parameter if
there is one exact match. If there is more than one
match, it displays the first topic found. If there is no

The WinHelp API§ 19-5

match, it displays an error message.

HELP_PARTIALKEY

A long pointer to a string
that contains a keyword for
the requested topic.

Displays the topic in the keyword list that matches
the keyword passed in the dwData parameter if
there is one exact match. If there is more than one
match, it displays the Search dialog box with the
topics found listed in the Go To box. If there is no
match, it displays the Search dialog box.

If you just want to bring up the Search dialog box
without passing a keyword (the third result), you
should use a long pointer to an empty string.

HELP_MULTIKEY

A long pointer to the
MULTIKEYHELP
structure, as defined in
WINDOWS.H. This
structure specifies the table
footnote character and the
keyword.

Displays the topic identified by a keyword in an
alternate keyword table.

HELP_COMMAND

A long pointer to a string
that contains a Help macro
to be executed.

Executes the Help macro string specified in the
dwData parameter. Help must be running and the
Help file must be open when Help receives this API
message; otherwise, Help may ignore this message.

HELP_SETWINPOS

A far pointer to the
HELPWININFO structure,
as defined in WINDOWS.H.
This structure specifies the
size and position of the main
Help window or a secondary
window.

Positions the Help window according to the data
passed. If the Help window is minimized, it is
opened first and then positioned.

 Microsoft Windows Help Authoring GuideHELP_CLOSEWINDOW

Ignored; applications should
set to 0L.

Closes the main Help window, or a secondary
window if specified in the lpszHelpFile argument.

HELP_FORCEFILE

Ignored; applications should
set to 0L.

Ensures that the correct Help file is displayed. If the
correct Help file is currently displayed, there is no
action. If the correct Help file is not displayed,
WinHelp opens the correct file and displays the
topic defined by the CONTENTS option in the
[OPTIONS] section of the Help project file.

HELP_HELPONHELP

Ignored; applications should
set to 0L.

Displays the Contents topic of the designated How
To Use Help file.

HELP_QUIT

Ignored; applications should
set to 0L.

Informs the Help application that Help is no longer
needed. If no other applications have requested
Help, Windows closes the Help application.

The following table shows the complete list of #defines for WinHelp commands.

wCommand Hexadecimal value

#define HELP_CONTEXT 0x0001

#define HELP_QUIT 0x0002

The WinHelp API§ 19-7#define HELP_INDEX 0x0003 (Windows Help version 3.0)

#define HELP_CONTENTS 0x0003

#define HELP_HELPONHELP 0x0004

#define HELP_SETINDEX 0x0005 (Windows Help version 3.0)

#define HELP_SETCONTENTS 0x0005

#define HELP_CONTEXTPOPUP 0x0008

#define HELP_FORCEFILE 0x0009

#define HELP_KEY 0x0101

#define HELP_COMMAND 0x0102

#define HELP_POPUPID 0x0104

 Microsoft Windows Help Authoring Guide

#define HELP_PARTIALKEY 0x0105

#define HELP_CLOSEWINDOW 0x0107

#define HELP_CONTEXTNOFOCUS 0x0108

#define HELP_MULTIKEY 0x0201

#define HELP_SETWINPOS 0x0203

Windows applications can offer help to their users by using the WinHelp
function to start Windows Help and display topics in the application’s Help file.
The WinHelp function gives a Windows application complete access to the Help
file, as well as to the menus and commands of Windows Help. Many applications
use WinHelp to implement context-sensitive Help. Context-sensitive Help
enables users to view topics about specific windows, menus, menu items, and
control windows by selecting the item with the keyboard or the mouse. For
example, a user can learn about the Open command on the File menu by selecting
the command (using the direction keys) and pressing the F1 key.

Using Help in a Windows Application

The WinHelp API§ 19-9

Every application should
provide a Help menu to allow
the user to open the Help file
with either the mouse or the
keyboard. The Help menu

should contain at least one Contents menu item that, when chosen, displays the
Contents or the main topic in the Help file. To support the Help menu, the
application’s main window procedure should check for the Contents menu item
and call the WinHelp function, as in the following example:
case WM_COMMAND:
 switch (wParam) {
 case IDM_HELP_CONTENTS:
 WinHelp(hwnd, "myhelp.hlp", HELP_CONTENTS, 0L);
 return 0L;
 .
 .
 .

 }
 break;

You can add other menu items to the Help menu for topics containing general
information about the application. For example, if your Help file contains a topic
that describes how to use the keyboard, you can place a Keyboard menu item on
the Help menu. To support additional menu items, your application must specify
either the context string or the context identifier for the corresponding topic when
it calls the WinHelp function. The following example uses a Help macro to
specify the context string IDM_HELP_KEYBOARD for the Keyboard topic:
case IDM_HELP_KEYBOARD:
 WinHelp(hwnd, "myhelp.hlp", HELP_COMMAND,
 (DWORD)(LPSTR)"JumpID(\"myhelp.hlp\",\"IDM_HELP_KEYBOARD\")");
 return 0L;

A better way to display a topic is to use a context identifier. To do this, the Help
file must assign a unique number to the corresponding context string, in the
[MAP] section of the Help project file. For example, the following section
assigns the number 101 to the context string IDM_HELP_KEYBOARD:
[MAP]
IDM_HELP_KEYBOARD 101

An application can display the Keyboard topic by specifying the context
identifier in the call to the WinHelp function, as in the following example:
#define IDM_HELP_KEYBOARD 101

WinHelp(hwnd, "myhelp.hlp", HELP_CONTEXT, (DWORD)IDM_HELP_KEYBOARD);

To make maintenance of an application easier, most programmers place their

Choosing Help from the Help Menu

 Microsoft Windows Help Authoring Guide

defined constants (such as IDM_HELP_KEYBOARD in the previous example)
in a single header file. As long as the names of the defined constants in the header
file are identical to the context strings in the Help file, you can include the header
file in the [MAP] section to assign context identifiers, as shown in the following
example:
[MAP]
#include <myhelp.h>

If the defined constants in the header file are different from the context strings in
the Help file, you can use Help Author to perform the context mapping.

Defining More Than One Help Contents

Some applications may require more than one Help Contents topic, depending on
the state of the application. For example, the interface and options in PIF Editor
are different for Standard mode and Enhanced mode. Therefore, the Help offered
by PIF Editor depends on which mode the user is running. When running in
Standard mode, the user sees the Help Contents tailored to that mode, and the
user see a different Help Contents when running in Enhanced mode.

If a Help file contains two or more Contents topics, the application can assign one
as the default by using the context identifier and the HELP_SETCONTENTS
value in a call to the WinHelp function.

The sample application Helpex applies a somewhat different model by defining a
function that the application can use instead of WinHelp. This function sends the
HELP_SETCONTENTS value and sets the Contents topic without opening
Windows Help.
BOOL MyWinHelp(hwnd, lpHelpfile, wCommand, dwData)
HWND hwnd;
LPSTR lpHelpfile;
WORD wCommand;
DWORD dwData;
{
 static DWORD ctxContents = (DWORD)-1L;

 if (wCommand == HELP_SETCONTENTS) {
 ctxContents = dwData;
 return (TRUE);
 }

 if (wCommand == HELP_CONTENTS && ctxContents != (DWORD)-1L) {
 WinHelp(hwnd, lpHelpfile, HELP_CONTEXT, ctxContents);
 }
 else {
 WinHelp(hwnd, lpHelpfile, wCommand, dwData);
 }

The WinHelp API§ 19-11
 if (wCommand != HELP_QUIT && ctxContents != (DWORD)-1L) {
 WinHelp (hwnd, lpHelpfile, HELP_SETCONTENTS, dwData);
 }

}

After the Contents topic is set, the application can use any WinHelp API,

including HELP_CONTENTS.

An application can enable the user to choose a help topic with the keyboard by
intercepting the F1 key. Intercepting this key lets the user select a menu, menu
item, dialog box, message box, or control window and view Help for it with a
single keystroke.

Note

The sample code in this section assumes that resource ID
numbers are all unique and correspond directly to context ID numbers
used for Help. Although this assumption makes things more restrictive
than they have to be, it is a worthwhile option to consider using because
it simplifies the code.

To intercept the F1 key, the application must install a message filter procedure by
using the SetWindowsHook function. This allows the application to examine all
keystrokes for the application, regardless of which window has the input focus. If
the filter procedure detects the F1 key, it posts a WM_F1DOWN message
(application-defined) to the application’s main window procedure. The procedure
then determines which Help topic to display.

The filter procedure should have the following form:
int FAR PASCAL FilterFunc(nCode, wParam, lParam)
int nCode;
WORD wParam;
DWORD lParam;
{
 LPMSG lpmsg = (LPMSG)lParam;

 if ((nCode == MSGF_DIALOGBOX || nCode == MSGF_MENU) &&
 lpmsg->message == WM_KEYDOWN && lpmsg->wParam == VK_F1) {
 PostMessage(hWnd, WM_F1DOWN, nCode, 0L);

Choosing Help with the Keyboard

 Microsoft Windows Help Authoring Guide

 }

 DefHookProc(nCode, wParam, lParam, &lpFilterFunc);

 return 0;
}

The application should install the filter procedure after creating the main window,
as shown in the following example:
lpProcInstance = MakeProcInstance(FilterFunc, hInstance);
if (lpProcInstance == NULL)
 return FALSE;
lpFilterFunc = SetWindowsHook(WH_MSGFILTER, lpProcInstance);

Note

Be sure that FilterFunc is exported in the .DEF file.

Like all callback functions, the filter procedure must be exported by the
application.

The filter procedure sends a WM_F1DOWN message only when the F1 key is
pressed in a dialog box, message box, or menu. Many applications also display
the Contents topic if no menu, dialog box, or message box is selected when the
user presses the F1 key. In this case, the application should define the F1 key as an
accelerator key that starts Help.

To create an accelerator key, the application’s resource definition file must define
an accelerator table, as follows:
1 ACCELERATORS
BEGIN
 VK_F1, IDM_HELP_CONTENTS, VIRTKEY
END

To support the accelerator key, the application must load the accelerator table by
using the LoadAccelerators function and translate the accelerator keys in the
main message loop by using the TranslateAccelerator function.

In addition to installing the filter procedure, the application must keep track of
which menu, menu item, dialog box, or message box is currently selected. In
other words, when the user selects an item, the application must set a global
variable indicating the current context. For dialog and message boxes, the
application should set the dwCurrentHelpId global variable immediately before
calling the DialogBox or MessageBox function. For menus and menu items, the
application should set the variable whenever it receives a WM_MENUSELECT

The WinHelp API§ 19-13

message. As long as identifiers for all menu items and controls in an application
are unique, an application can use code similar to the following example to
monitor menu selections:
case WM_MENUSELECT:
 /*
 * Set dwCurrentHelpId to the Help ID of the menu item that is
 * currently selected.
 */

 if (HIWORD(lParam) == 0) /* no menu selected */
 dwCurrentHelpId = ID_NONE;

 else if (lParam & MF_POPUP) { /* pop-up selected */
 if ((HMENU)wParam == hMenuFile)
 dwCurrentHelpId = ID_FILE;
 else if ((HMENU)wParam == hMenuEdit)
 dwCurrentHelpId = ID_EDIT;
 else if ((HMENU)wParam == hMenuHelp)
 dwCurrentHelpId = ID_HELP;
 else
 dwCurrentHelpId = ID_SYSTEM;
 }
 else /* menu item selected */
 dwCurrentHelpId = wParam;

 break;

In this example, the hMenuFile, hMenuEdit, and hMenuHelp parameters must
previously have been set to specify the corresponding menu handles. An
application can use the GetMenu and GetSubMenu functions to retrieve these
handles.

When the main window procedure finally receives a WM_F1DOWN message, it
should use the current value of the global variable to display a Help topic. The
application can also provide Help for individual controls in a dialog box by
determining which control has the focus at this point, as shown in the following
example:
case WM_F1DOWN:
 /*
 * If there is a current Help context, display it.
 */

 if (dwCurrentHelpId != ID_NONE) {

 DWORD dwHelp = dwCurrentHelpId;

 /*
 * Check for context-sensitive Help for individual dialog box
 * controls.
 */

 if (wParam == MSGF_DIALOGBOX) {

 Microsoft Windows Help Authoring Guide

 WORD wID = GetWindowWord(GetFocus(), GWW_ID);
 if (wID != IDOK && wID != IDCANCEL)
 dwHelp = (DWORD) wID;
 }

 WinHelp(hWnd, szHelpFileName, HELP_CONTEXT, dwHelp);

 /*
 * This call is used to remove the highlighting from the system
 * menu, if necessary.
 */

 DrawMenuBar(hWnd);
 }

 break;

When the application ends, it must remove the filter procedure by using the
UnhookWindowsHook function and free the procedure instance for the function

by using the FreeProcInstance function.

An application can let the user choose a Help topic with the mouse by
intercepting mouse input messages and calling the WinHelp function. To
distinguish requests to view Help from regular mouse input, the user must press
the SHIFT+F1 key combination. In such cases, the application sets a global
variable when the user presses the key combination and changes the cursor shape
to a question-mark pointer to indicate that the mouse can be used to choose a
Help topic.

To detect the SHIFT+F1 key combination, an application checks for the VK_F1
virtual-key value in each WM_KEYDOWN message sent to its main window
procedure. It also checks for the VK_ESCAPE virtual-key code. The user presses
the ESC key to quit Help and restore the mouse to its regular function. The
following example checks for these keys:
case WM_KEYDOWN:
 if (wParam == VK_F1) {

 /* If Shift+F1, turn on Help mode and set Help cursor. */

 if (GetKeyState(VK_SHIFT)) {
 bHelp = TRUE;
 SetCursor(hHelpCursor);
 return (DefWindowProc(hWnd, message, wParam, lParam));
 }

Choosing Help with the Mouse

The WinHelp API§ 19-15

 /* If F1 without shift, call Help main index topic. */

 else {
 WinHelp(hWnd,szHelpFileName,HELP_INDEX,0L);
 }
 }

 else if (wParam == VK_ESCAPE && bHelp) {

 /* To escape during Help mode, turn off Help mode. */

 bHelp = FALSE;
 SetCursor((HCURSOR) GetClassWord(hWnd, GCW_HCURSOR));
 }

 break;

Until the user clicks the mouse or presses the ESC key, the application responds
to WM_SETCURSOR messages by resetting the cursor to the arrow and
question-mark combination.
case WM_SETCURSOR:
 /*
 * In Help mode it is necessary to reset the cursor in response to
 * every WM_SETCURSOR message. Otherwise, by default, Windows resets
 * the cursor to that of the window class.
 */

 if (bHelp) {
 SetCursor(hHelpCursor);
 break;
 }
 return (DefWindowProc(hWnd, message, wParam, lParam));

case WM_INITMENU:
 if (bHelp) {
 SetCursor(hHelpCursor);
 }
 return (TRUE);

If the user clicks the mouse button in a nonclient area of the application window
while in Help mode, the application receives a WM_NCLBUTTONDOWN
message. By examining the wParam value of this message, the application can
determine which context identifier to pass to WinHelp.
case WM_NCLBUTTONDOWN:
 /*
 * If we are in Help mode (Shift+F1), display context-sensitive
 * Help for nonclient area.
 */

 if (bHelp) {
 dwHelpContextId =
 (wParam == HTCAPTION) ?(DWORD) HELPID_TITLE_BAR:
 (wParam == HTSIZE) ? (DWORD) HELPID_SIZE_BOX:
 (wParam == HTREDUCE) ? (DWORD) HELPID_MINIMIZE_ICON:
 (wParam == HTZOOM) ? (DWORD) HELPID_MAXIMIZE_ICON:

 Microsoft Windows Help Authoring Guide

 (wParam == HTSYSMENU) ?(DWORD) HELPID_SYSTEM_MENU:
 (wParam == HTBOTTOM) ? (DWORD) HELPID_SIZING_BORDER:
 (wParam == HTBOTTOMLEFT) ? (DWORD) HELPID_SIZING_BORDER:
 (wParam == HTBOTTOMRIGHT) ?(DWORD) HELPID_SIZING_BORDER:
 (wParam == HTTOP) ?(DWORD) HELPID_SIZING_BORDER:
 (wParam == HTLEFT) ?(DWORD) HELPID_SIZING_BORDER:
 (wParam == HTRIGHT) ?(DWORD) HELPID_SIZING_BORDER:
 (wParam == HTTOPLEFT) ?(DWORD) HELPID_SIZING_BORDER:
 (wParam == HTTOPRIGHT) ? (DWORD) HELPID_SIZING_BORDER:
 (DWORD) 0L;

 if (!((BOOL) dwHelpContextId))
 return (DefWindowProc(hWnd, message, wParam, lParam));
 bHelp = FALSE;
 WinHelp(hWnd, szHelpFileName, HELP_CONTEXT, dwHelpContextId);
 break;
 }

 return (DefWindowProc(hWnd, message, wParam, lParam))

If the user clicks a menu item while in Help mode, the application intercepts the
WM_COMMAND message and sends the Help request:
case WM_COMMAND:

 /* Are we in Help mode (Shift+F1)? */

 if (bHelp) {
 bHelp = FALSE;
 WinHelp(hWnd,szHelpFileName,HELP_CONTEXT, (DWORD)wParam);
 return NULL;

 }

An application can enable the user to search for Help topics based on full or
partial keywords. This method is similar to employing the Search dialog box in
Windows Help to find useful topics. The following example searches for the
keyword “Keyboard” and displays the corresponding topic, if found:
WinHelp (hWnd, "myhelp.hlp", HELP_KEY, "Keyboard");

If the topic is not found, Windows Help displays an error message. If more than
one topic has the same keyword, Windows Help displays only the first topic.

An application can give the user more options in a search by specifying partial
keywords. When a partial keyword is given, Windows Help usually displays the
Search dialog box to allow the user to continue the search or return to the
application. However, if there is an exact match and no other topic exists with the

Searching for Help with Keywords

The WinHelp API§ 19-17

given keyword, Windows Help displays the topic. The following example opens
the Search dialog box and selects the first keyword in the list starting with the
letters Ke:
WinHelp(hwnd, "myhelp.hlp", HELP_PARTIALKEY, "Ke");

When the HELP_KEY and HELP_PARTIALKEY values are specified in the
WinHelp function, Windows Help searches the K keyword table. This table
contains keywords generated by using the letter K with \footnote statements in
the topic file. However, your application may have commands or terms that
correspond to terms in a similar, but different, application.

An application can search alternative keyword tables by specifying the
HELP_MULTIKEY value in the WinHelp function. In this case, the application
must specify the footnote character for the alternate keyword table and the full
keyword in a MULTIKEYHELP structure. The MULTIKEYHELP structure
specifies a keyword table and an associated keyword to be used by the Windows
Help application.

The MULTIKEYHELP structure has the following form:
typedef struct tagMULTIKEYHELP { /* mkh */
 WORD mkSize;
 BYTE mkKeyList;
 BYTE szKeyPhrase[1];
} MULTIKEYHELP;

where

mkSize
Specifies the length, in bytes, of the MULTIKEYHELP structure,
including the keyword (or phrase) and the associated keyword-table
letter.

mkKeyList
Contains a single character that identifies the keyword table to be
searched.

szKeyPhrase
Contains a null-terminated text string that specifies the keyword to be
located in the alternate keyword table.

The following example illustrates a keyword search for the word “frame” in the
alternate keyword table designated with the footnote character L:
HANDLE hqmk;
MULTIKEYHELP far *qmk;

 Microsoft Windows Help Authoring Guide

char szKeyword[] = "frame";

case MULTIKEY:
 hqmk = GlobalAlloc(GHND, (sizeof(MULTIKEYHELP) + lstrlen(szKeyword)));
 if (hqmk == NULL)
 break;
 qmk = (MULTIKEYHELP far *) GlobalLock(hqmk);
 qmk -> mkSize = sizeof(MULTIKEYHELP) + strlen(szKeyword);
 qmk -> mkKeylist = 'L';
 lstrcpy(qmk->szKeyphrase, szKeyword);

 WinHelp(hWnd, szHelpFileName, HELP_MULTIKEY, (DWORD) (LPSTR) qmk);

 GlobalUnlock(hqmk);
 GlobalFree(hqmk);

 break;

An application can display Help topics in secondary windows instead of in
Windows Help’s main window. Secondary windows are useful whenever the user
does not need the full capabilities of Windows Help. The Windows Help menus
and buttons are not available in secondary windows.

To display Help in a secondary window, the application specifies the name of the
secondary window along with the name of the Help file. The following example
displays the Help topic having the context identifier IDM_FILE_SAVE in the
secondary window named “wnd_menu”:
WinHelp(hwnd, "myhelp.hlp>wnd_menu", HELP_CONTEXT, IDM_FILE_SAVE);

The name and characteristics of the secondary window must be defined in the
[WINDOWS] section of the Help project file, as in the following example:
[WINDOWS]
wnd_menu = "Menus", (128, 128, 256, 256), 0

Windows Help displays the secondary window with the initial size and position
specified in the [WINDOWS] section. However, an application can set a new
size and position by specifying the HELP_SETWINPOS value in the WinHelp
function. In this case, the application sets the members in a HELPWININFO
structure to specify the window size and position. The following example sets the
“wnd_menu” secondary window to a new size and position:
HANDLE hhwi;
LPHELPWININFO lphwi;
WORD wSize;

Displaying Help in a Secondary Window

The WinHelp API§ 19-19

char *szWndName = "wnd_menu";

wSize = sizeof(HELPWININFO) + lstrlen(szWndName);
hhwi = GlobalAlloc(GHND, wSize);
lphwi = (LPHELPWININFO)GlobalLock(hhwi);

lphwi->wStructSize = wSize;
lphwi->x = 256;
lphwi->y = 256;
lphwi->dx = 767;
lphwi->dy = 512;
lphwi->wMax = 0;
lstrcpy(lphwi->rgchMember, szWndName);

WinHelp(hwnd, "myhelp.hlp", HELP_SETWINPOS, lphwi);

GlobalUnlock(hhwi);

GlobalFree(hhwi);

Windows Help requires an application to explicitly cancel Help so that Windows
Help can free any resources it used to keep track of the application and its Help
files. The application can do this at any time.

An application cancels Windows Help by calling the WinHelp function and
specifying the HELP_QUIT value, as shown in the following example:
case WM_DESTROY:
 WinHelp (hwnd, "myhelp.hlp", HELP_QUIT, NULL);

If the application has made any calls to the WinHelp function, it must cancel
Help before it closes its main window (for example, in response to the
WM_DESTROY message in the main window procedure). If the application has
opened more than one Help file, it must call WinHelp to cancel Help for each
file. Windows Help remains running until all applications or dynamic-link
libraries that have called WinHelp function have canceled Help.

We strongly recommend that an application use the HELP_QUIT parameter in its
exit routine even if it has not actually sent any other WinHelp calls.

Ó 1993 Microsoft Corporation, All rights reserved

Canceling Help

 Microsoft Windows Help Authoring Guide

	The WinHelp API
	The WinHelp Function
	Using Help in a Windows Application
	Choosing Help from the Help Menu
	Choosing Help with the Keyboard
	Choosing Help with the Mouse
	Searching for Help with Keywords
	Displaying Help in a Secondary Window
	Canceling Help
	Defining More Than One Help Contents

